Imagem da capa

Calcular e apresentar tamanhos do efeito em trabalhos científicos (2): Guia para reportar a força das relações

Helena Espírito Santo, Fernanda Daniel

Resumo


No primeiro número da Revista Portuguesa de Investigação Comportamental e Social foi descrita a importância de calcular, indicar e interpretar os tamanhos do efeito para as diferenças de médias de dois grupos. A RPICS pretende continuar a alertar para a importância de reportar os tamanhos do efeito para outros testes estatísticos. A magnitude da força das relações não foi indicada no artigo prévio e talvez não se saiba que a correlação é um tamanho do efeito. Assim, este artigo pretende fornecer algumas diretrizes aos autores sobre os procedimentos de cálculo do coeficiente de correlação de Pearson e alguns coeficientes de correlação para dados especiais (Ró de Spearman, Tau de Kendall, Ponto-bisserial e bisserial, Fi, V de Cramér e Eta).

Com esse objetivo, serão apresentadas as fórmulas, os passos no SPSS (Statistical Package for the Social Sciences), pressupostos e precauções, classificação dos valores e sua interpretação. Uma vez que o SPSS não computa todos os coeficientes referidos, nos suplementos ao artigo são incluídas cinco folhas de cálculo (3 formas de comparar correlações, correlações ponto-bisserial e bisserial e correção de correlações para amostras < 60).




DOI: http://dx.doi.org/10.7342/ismt.rpics.2017.3.1.48

Palavras-chave


Tamanho do efeito; Coeficientes de correlação; Apresentação estatística; Interpretação estatística

Texto Completo:

PDF Sup.1 Sup.2 Sup.3

Referências


Abrami, P. C., Cholmsky, P., & Gordon, R. (2001). Statistical analysis for the social sciences: An interactive approach. Boston: Allyn and Bacon.

Bartlett, J. W., Seaman, S. R., White, I. R., & Carpenter, J. R. (2015). Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model. Statistical Methods in Medical Research, 24(4), 462–487. doi:10.1177/0962280214521348

Beranuy, M., Oberst, U., Carbonell, X., & Chamarro, A. (2009). Problematic Internet and mobile phone use and clinical symptoms in college students: The role of emotional intelligence. Computers in Human Behavior, 25(5), 1182–1187. doi:10.1016/j.chb.2009.03.001

Berben, L., Sereika, S. M., & Engberg, S. (2012). Effect size estimation: Methods and examples. International Journal of Nursing Studies, 49(8), 1039–1047. doi:10.1016/j.ijnurstu.2012.01.015

Bezeau, S., & Graves, R. (2001). Statistical power and effect sizes of clinical neuropsychology research. Journal of Clinical and Experimental Neuropsychology, 23(3), 399–406. doi:10.1076/jcen.23.3.399.1181

Breaugh, J. A. (2003). Effect size estimation: Factors to consider and mistakes to avoid. Journal of Management, 29(1), 79–97. doi:10.1177/014920630302900106

Brogden, H. E. (1949). A new coefficient: Application to biserial correlation and to estimation of selective efficiency. Psychometrika, 14(3), 169–182. doi:10.1007/BF02289151

Butters, M. A., Young, J. B., Lopez, O., Aizenstein, H. J., Mulsant, B. H., Reynolds, C. F., ... Becker, J. T. (2008). Pathways linking late-life depression to persistent cognitive impairment and dementia. Dialogues in Clinical Neuroscience, 10(3), 345–357. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872078

Carroll, J. B. (1961). The nature of the data, or how to choose a correlation coefficient. Psychometrika, 26(4), 347–372. doi:10.1007/BF02289768

Chiu, S. I., Hong, F. Y., & Chiu, S. L. (2013). An analysis on the correlation and gender difference between college students' internet addiction and mobile phone addiction in Taiwan. ISRN Addiction, 2013. doi:10.1155/2013/360607

Cohen, B. H. (2001). Explaining psychological statistics (2nd ed.). New York, NY: Wiley.

Cohen, J. (1983). The cost of dichotomization. Applied Psychological Measurement, 7(3), 249–253. doi:10.1177/014662168300700301

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New York, NY: Lawrence Erlbaum Associates.

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159. doi:10.1037/0033-2909.112.1.155

Cohen, J., & Cohen, P. (1983). Applied multiple regression/correlation analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple correlation/regression analysis for the behavioral sciences. Mahwah, NJ: Lawrence Erlbaum Associates.

Costa, M. D., Espirito-Santo, H., Simões, S. C., Correia, A. R., Almeida, R., Ferreira L., ... Lemos, L. (2013). 1549 - Correlates of elderly loneliness [Abstract]. 21st European Congress of Psychiatry, 28(1), 1–6. doi:10.1016/S0924-9338(13)76559-3

Cumming, G. (2012). Understanding the new statistics. New York, NY: Routledge.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 39(1), 1–38. doi:10.2307/2984875

Durlak, J. A. (2009). How to select, calculate, and interpret effect sizes. Journal of Pediatric Psychology, 34(9), 917–928. doi:10.1093/jpepsy/jsp004

Ellis, P. D. (2010). The essential guide to effect sizes. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511761676

Enders, W. (2015). Applied econometric time series (4th ed.). Hoboken, NJ: Wiley & Sons, Inc.

Espirito-Santo, H., & Daniel, F. B. (2015). Calcular e apresentar tamanhos do efeito em trabalhos científicos (1): As limitações do p < 0,05 na análise de diferenças de médias de dois grupos [Calculating and reporting effect sizes on scientific papers (1): p < 0.05 limitations in the analysis of mean differences of two groups]. Revista Portuguesa de Investigação Comportamental e Social, 1(1), 3–16. doi:10.7342/ismt.rpics.2015.1.1.14

Ezekiel, M. (1929). The application of the theory of error to multiple and curvilinear correlation. Journal of the American Statistical Association, 24(165A), 99–104. doi:10.1080/01621459.1929.10506278

Ferguson, C. J. (2009). An effect size primer: A guide for clinicians and researchers. Professional Psychology: Research and Practice, 40(5), 532–538. doi:10.1037/a0015808

Fermino, S., Espirito-Santo, H., Matreno, J., Daniel, F., Pena, I., Maia, S., ... Gaspar, A. (2012). Diferenças sintomáticas, neuropsicológicas e sociodemográficas entre idosos com doença de Alzheimer e idosos com depressão [Symptomatic, neuropsychological, and sociodemographic differences between older people with Alzheimer's disease and older people with depression]. In Asociación Española de Psicología Conductual (Ed.), Libro de Resúmenes de los Trabajos Aceptados en el V Congreso Internacional Y X Nacional de Psicología Clínica (p. 551). Retrieved from http://repositorio.ismt.pt/handle/123456789/68

Fisher, R. A. (1915). Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika, 10(4), 507-521. doi:10.2307/2331838

Fisher, R. A. (1921). On the “probable error” of a coefficient of correlation deduced from a small sample. Metron, 1, 3-32. Retrieved from http://hdl.handle.net/2440/15169

Fisher, R. A. (1924). The distribution of the partial correlation coefficient. Metron, 3, 329-332. Retrieved from http://hdl.handle.net/2440/15182

Fortenbaugh, F. C., DeGutis, J., Germine, L., Wilmer, J. B., Grosso, M., Russo, K., & Esterman, M. (2015). Sustained attention across the life span in a sample of 10000: Dissociating ability and strategy. Psychological Science, 26(9), 1497–1510. doi:10.1177/0956797615594896

Glass, G. V., & Hopkins, K. D. (1995). Statistical methods in education and psychology (3rd ed.). Needham Heights, MA: Allyn & Bacon.

Goodwin, L. D., & Leech, N. L. (2006). Understanding correlation: Factors that affect the size of r. The Journal of Experimental Education, 74(3), 251–266. doi:10.3200/JEXE.74.3.249-266

Granger, C. W. J., & Newbold, P. (1974). Spurious regressions in econometrics. Journal of Econometrics, 2(2), 111–120. doi:10.1016/0304-4076(74)90034-7

Gravetter, F. J., & Wallnau, L. B. (2013). Statistics for the behavioral sciences (9th ed.). Belmont, CA: Cengage Learning.

Gupta, D. S. (1960). Point biserial correlation coefficient and its generalization. Psychometrika, 25(4), 393–408. doi:10.1007/BF02289756

He, Y., Zaslavsky, A. M., Landrum, M. B., Harrington, D. P., & Catalano, P. (2010). Multiple imputation in a large-scale complex survey: A practical guide. Statistical Methods in Medical Research, 19(6), 653–670. doi:10.1177/0962280208101273

Hedges, L. V. (1981). Distribution theory for Glass's estimator of effect size and related estimators. Journal of Educational and Behavioral Statistics, 6(2), 107–128. doi:10.3102/10769986006002107

Hinkle, D. E., Wiersma, W., & Jurs, S. G. (2002). Applied statistics for the behavioral sciences (5th ed.). Boston: Houghton Mifflin.

Horton, N. J., & Kleinman, K. P. (2007). Much ado about nothing. The American Statistician, 61(1), 79–90. doi:10.1198/000313007X172556

Huff, D. (1993). How to lie with statistics. New York, NY: W. W. Norton & Company. Retrieved from http://faculty.neu.edu.cn/cc/zhangyf/papers/How-to-Lie-with-Statistics.pdf

IBM (2013). IBM SPSS modeler 16 algorithms guide. IBM Corporation

Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2), 81-93. doi:10.2307/2332226

Kline, R. B. (2004). Beyond significance testing: Reforming data analysis methods in behavioral research (2nd ed.). Washington, DC: American Psychological Association.

Lipsey, M. W., Puzio, K., Yun, C., Hebert, M. A., Steinka-Fry, K., Cole, M. W., ... Busick, M. D. (2012). Translating the statistical representation of the effects of education interventions into more readily interpretable forms. National Center for Special Education Research, Institute of Education Sciences.

MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2002). On the practice of dichotomization of quantitative variables. Psychological Methods, 7(1), 19–40. doi:10.1037//1082-989X.7.1.19

Matthews, R. (2000). Storks deliver babies (p = 0.008). Teaching Statistics, 22(2), 36–38. doi:10.1111/1467-9639.00013

Mendonca, J. D., & Holden, R. R. (1996). Are all suicidal ideas closely linked to hopelessness? Acta Psychiatrica Scandinavica, 93(4), 246–251. doi:10.1111/j.1600-0447.1996.tb10642.x

Nakagawa, S., & Freckleton, R. P. (2008). Missing inaction: The dangers of ignoring missing data. Trends in Ecology and Evolution, 23(11), 592–596. doi:10.1016/j.tree.2008.06.014

Napoleão, M., Monteiro, B., & Espirito-Santo, H. (2016). Qualidade subjetiva do sono, sintomas depressivos, sentimentos de solidão e institucionalização em pessoas idosas [Subjective sleep quality, depressive symptoms, feelings of loneliness, and institutionalization in elderly people]. Revista Portuguesa de Investigação Comportamental e Social, 2(2), 12–24. doi:10.19234/ismt.rpics.2016.2.2.37

Nelsen, R. B. (2012). Kendall tau metric. In M. Hazewinkel (Ed.), Encyclopedia of mathematics. Retrieved from http://www.encyclopediaofmath.org/index.php?title=Kendall_tau_metric&oldid=12869

Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New York, NY: McGraw-Hill.

Olejnik, S., & Algina, J. (2000). Measures of effect size for comparative studies: Applications, interpretations, and limitations. Contemporary Educational Psychology, 25(3), 241–286. doi:10.1006/ceps.2000.1040

Pallant, J. (2011). SPSS survival manual: A step by step guide to data analysis using SPSS for Windows (4th ed.). Crows Nest, NSW: Allen and Unwin.

Pearson, K. (1904). Report on certain enteric fever inoculation statistics. British Medical Journal, 2(2288), 1243–1246. doi:10.1136/bmj.2.2288.1243

Pearson, K. (1905). Mathematical contributions to the theory of evolution XIV: On the general theory of skew correlation and non-linear regression. Draper’s Company Research Memoirs, Biometric Series II. London: Dulau & Co. Retrieved from https://archive.org/stream/b24397933#page/n49/mode/1up

Pituch, K. A., & Stevens, J. P. (2015). Applied multivariate statistics for the social sciences (6th ed.). New York, NY: Routledge.

Rodgers, J. L., & Nicewander, W. A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42(1), 59–66. doi:10.1080/00031305.1988.10475524

Rosenthal, R. (1991). Meta-analytic procedures for social research (Revised edition). Newbury Park, CA: Sage publications.

Rosenthal, R., & DiMatteo, M. R. (2001). Meta-analysis: Recent developments in quantitative methods for literature reviews. Annual Review of Psychology, 52(1), 59–82. doi:10.1146/annurev.psych.52.1.59

Rosenthal, R., & Rubin, D. B. (1982). A simple, general purpose display of magnitude of experimental effect. Journal of Educational Psychology, 74(2), 166-169. doi:10.1037/0022-0663.74.2.166

Rosnow, R. L., & Rosenthal, R. (1996). Computing contrasts, effect sizes, and counternulls on other people's published data: General procedures for research consumers. Psychological Methods, 1(4), 331–340. doi:10.1037/1082-989X.1.4.331

Rovine, M. J., & Von Eye, A. (1997). A 14th way to look at a correlation coefficient: Correlation as the proportion of matches. The American Statistician, 51(1), 42–46. doi:10.1080/00031305.1997.10473586

Rubin, D. B. (1996). Multiple imputation after 18+ Years. Journal of the American Statistical Association, 91(434), 473–489. doi:10.1080/01621459.1996.10476908

Shieh, G. (2010). Estimation of the simple correlation coefficient. Behavior Research Methods, 42(4), 906–917. doi:10.3758/BRM.42.4.906

Simões, S., Ferreira, J. J., Braga, S., & Vicente, H. T. (2015). Bullying, vinculação e estilos educativos parentais em adolescentes do 3º ciclo do ensino básico [Bullying, attachment and parental rearing styles in adolescents from the 3rd cycle of basic school]. Revista Portuguesa de Investigação Comportamental e Social, 1(1), 30–41. doi:10.7342/ismt.rpics.2015.1.1.8

Smith, B. B. (1923). Handbook of statistical terms and methods. Bureau of Agricultural Economics.

Snyder, P., & Lawson, S. (1993). Evaluating results using corrected and uncorrected effect size estimates. The Journal of Experimental Education, 61(4), 334–349. doi:10.1080/00220973.1993.10806594

Sprinthall, R. C. (2003). Basic statistical analysis (7th ed.). Boston: Pearson Allyn & Bacon.

Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin, 87(2), 245–251. doi:10.1037/0033-2909.87.2.245

Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Boston: Pearson.

Templeton, G. F. (2011). A two-step approach for transforming continuous variables to normal: Implications and recommendations for IS research (Vol. 28, pp. 41–58). Paper presented at the Communications of the Association for Information. Retrieved from https://pdfs.semanticscholar.org/1449/8921aeae29847eb8a5c374ed905975cbded5.pdf

Thompson, B. (2006). Research synthesis: Effect sizes. In J. Green, G. Camilli & P. B. Elmore (Eds.), Handbook of complementary methods in education research (pp. 583–603). Washington, DC: Routledge.

Thompson, B. (2007). Effect sizes, confidence intervals, and confidence intervals for effect sizes. Psychology in the Schools, 44(5), 423–432. doi:10.1002/pits.20234

Vogt, W. P. (1999). Dictionary of statistics and methodology: A nontechnical guide for the social sciences (2nd ed.). Thousand Oaks, CA: Sage.

Wang, Z., & Thompson, B. (2007). Is the Pearson r2 biased, and if so, what is the best correction formula? The Journal of Experimental Education, 75(2), 109–125. doi:10.3200/JEXE.75.2.109-125


Apontadores

  • Não há apontadores.


Copyright (c) 2017 Helena Espírito Santo, & Fernanda Daniel

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.